Crear una estacion meteorologica con raspberry pi y un sensor dth11

Ya puestos a trastear con la raspberry y sus conexiones al GPIO, vamos a ver como podemos crear una pequeña estacion meteorologica con la raspberry pi, y un sensor dth11

Que necesitamos??

Una raspberry pi Un sensor dth11 (unos 2 € en <u>dealextreme</u>) Cables para conectarlo

Notas sobre los materiales necesarios El sensor que utilizo yo, y el que aparece en la imagen, viene con una resistencia de 10k(amarillo violeta rojo oro) incorparada entre el conector de señal y nuestra conexion al gpio. Si lo compramos suelto, habra que hacer un circuito en un protoboard tal como aparece en esta imagen:

Montaje de los componentes:

Conectamos el sensor dth11 al gpio de la raspberry asi:

RPi VCC (pin 1) -> DHT11 pin 1 RPi GPI04 (pin 7) -> DHT11 pin 2 RPi GND (pin 6) -> DHT11 pin 4 (pin3 si solo tiene 3 pins)

Creando un programa para poder acceder al sensor y leer temperatura y humedad:

Una vez realizadas las conexiones, vamos a crearnos un programa que realice las lecturas, y que nos saque los resultados por la pantalla.

He elegido el lenguaje de programacion en C Instalamos lo necesario: nota: Todo lo voy a hacer desde el terminal. Esto me permitira hacerlo todo, con una conexion SSH hacia mi raspberry Me situo en mi directorio HOME cd -Ejecuto estos comandos: sudo apt-get install git-core build-essential
git clone git://git.drogon.net/wiringPi
cd wiringPi
./build

Con esto ya tenemos lista la libreria wiringPi, para poder usar el puerto GPIO de la raspberry de una manera mas sencilla

Creamos el siguiente archivo con este comando: nano dth11.c

Escribimos el siguiente codigo:

CODIGO DESDE AQUI - Archivo dth11.c

//Incluimos librerias necesarias
#include <wiringPi.h>
#include <stdib.h>
#include <stdib.h>
#include <stdib.h>

//Definimos constantes #define MAX_TIME 85 #define DHT11PIN 7 #define ATTEMPTS 5

//Definimos un vector global
int dhtl1_val[5]={0,0,0,0};

////initial principal }
lststate=digitalRead(DHT11PIN);
if(counter==255){
break; }
//Las 3 primeras transiciones son ignoradas
if((i>=4)&&(i%2==0)){
 dhtli_val[j/8]<<=1;
 dhtli_val[j/8]=1;
}</pre> ; j++;

// Hacemos una suma de comprobacion para ver si el dato es correcto. Si es asi, lo mostramos ift(j=40)66(dhtI_val[d]==((dhtII_val[0]+dhtII_val[1]+dhtII_val[2]+dhtII_val[3])6 0xFF))}{ printf("dat,dvd.dvd,"ntII_val[0],dhtII_val[1],dhtII_val[1],dhtII_val[2],dhtII_val[3])

return 1;
}else{
 return 0;
}

//Emploza.mustro programa principal. //Emploza.mustro programa principal. //fistablecomes el nuero de intentos que vamos a realizar //la constante ATTEMPTS; int attempts-artTEMPTS;

//Si la libreria wiringPi, we el GPIO no esta listo, salimos de la aplicacion if(wiringPISetup()=-1){ exi(1);

while(attempts){
 //Intentamos leer el valor del gpio, llamando a la funcion
 int success = dht11_read_val(); //Si leemos con exito, salimos del while, y se acaba el programa if (success){ break;

//Si no lee con exito, restamos 1, al numero de intentos
attempts--;

//Esperamos medio segundo antes del siguiente intento.
delay(500);

} return 0;

CODIGO HASTA AQUI..... FIN DE ARCHIVO dth11.c

Una vez escrito, lo compilamos con el siguiente comando: gcc -o dht11 dht11.c -L /usr/local/lib -l wiringPi

Si compila bien, ejecutamos con este comando: sudo ./dht11

Deberia mostrarnos la temperatura, y la humedad separadas por comas.

Siguiente paso!!!

Como lo que nos interesa realmente, es tener unos datos actualizados cada minuto, y en forma de grafica, vamos a instalar un servidor web, y crearnos asi una pagina web donde podamos consultar los resultados que nos dara nuestra medicio de una forma grafica. Para eso, instalamos apache, y creamos la web necesaria.

Instalacion de apache:

Ejecutamos el siguiente comando: apt-get install apache2

Arrancamos apache: service apache2 start

Una vez instalado el

Creacion automatica de la medicion de temperatura y humedad:

Vamos a crearnos un fichero, para que vaya guardando de forma automatica los valores de temperatura y humedad, así como la fecha en la que se ha tomado dicha medicion. Nos situamos de nuevo en el directorio HOME: cd -Creamos el siguiente fichero con el siguiente codigo: nano dth11.sh CODIGO DESDE AQUI - Archivo dth11.sh

#!/bin/bash FECHA=\$(date +\%Y\%m\%d\%H\%M\%S) COMA="," TEMP=\$(/home/usuario/dth11)
echo "\$FECHA\$COMA\$TEMP" >> /var/www/temp.log

CODIGO HASTA AQUI..... FIN DE ARCHIVO dth11.sh

Con esto lo que hacemos, es un script que nos dara como resultado la fecha en el formato adecuado, seguido de la temperatura y humedad, y lo almacenara en un archivo llamado temp.log, en el directorio raiz de APACHE por defecto, para su lectura posterior.

Tarea programada con cron

A continuacion, le vamos a decir a cron (nuestro programador de tareas en linux), que ejecute el script cada minuto. Para eso ejecutamos el siguiente comando:

sudo crontab -e

Y añadimos la siguiente linea al final:

* * * * * /home/usuario/dth11.sh

Creamos la pagina web para mostrarnos los resultados leidos:

Nos situamos en el directorio de nuestro servidor web con el siguiente comando: cd /var/www Si existe un archivo index.html, lo borramos con el comando: rm index.html Descargamos la libreria dygraphs para poder generar la grafica: wget -P /var/www http://dygraphs.com/dygraph-combined.js

Nos creamos el archivo index.html para almacenar la web: nano index.html

CODIGO DESDE AQUI - Archivo index.html

</head> <body>

<h1>Grafica con temperaturas y humedad</h1>

chr/>
cdiv_ider_gadbi*_style="width:750px; height:400px;"></div_
cdiv_ider_gadbi*_style="text]javascript">
//Function addrevoruml{
 var s=num=**;
 if (s.length 2.2[
 s=^0*+s;
 }
 /Function addrevoruml{
 var s=num=**;
 }
 //Function diseformatisfield
 //function diseformatisfield
 //function diseformatisfield
 //function diseformatisfield
 /// var bit addireclinetate();
 var bit addireclinetate();
 var bit addireclinetate();
 var bit addireclinetate.getHintes(););
 var bit addireclinetate.getHintes(););
 var bit addireclinetate.getHintes();
 //rar si addireclinetate.getHintes();
 //function principal para generar el grafico. Se genera en el id="graphdiv"
 g= new Digraph(
 document.getElementByld('graphdiv'),
 {
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.getElementByld('graphdiv'),
 subdireclinetate.

{
 var.dste = new Date(x.replace(
 var.dste = new Date(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.replace(x.r

tabels: ['Date', 'Humedad (%)', 'Temp
};
</sript>
</body>
</html>

</ntml>

CODIGO HASTA AQUI..... FIN DE ARCHIVO index.html

Probandolo todo!!!

Si todo va bien, podemos probar que todo esto funciona, desde nuestro navegador de paginas veb, apurtando a la dirección jo de nuestra raspberry http://ip.de.mi.pi Deberia aparcer algo como esto:

Pagina web para poder acceder a la temperatura capturada

Resumen:

Espero que os sirva de utilidad. A mi me ha funcionado todo a la perfeccion. Un saludo a todos!!! Fuente de informacion:

http://chrisbaume.wordpress.com/2013/02/10/beer-monitoring/ http://dygraphs.com/ http://rpidude.blogspot.com.es/2012/11/temp-sensor-and-wiringpi.html

http://dx.com/es/p/arduino-digital-temperature-humidity-sensor-module-121350

http://ubuntuone.com/6mT9cTREz90BUfvQD1AGNy Agradecimientos:

Muchas gracias a Alberto, que me ha dejado todo el hardware necesario para poder hacer mis pinitos con todo esto. Un abrazo!!!